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Abstract. We study the motion of a particle confined in an ellipsoidal quantum dot, solving the
corresponding Schrödinger equation both numerically, using the appropriate coordinate system,
and variationally. The results from the two methods are compared, varying the ellipsoid semi-axes.
We find that the confined-state energies split with respect to those of the spherical quantum dot
and this can be explained as a consequence of both a volume-induced deformation effect and a
geometry-induced one. The role of the dot geometry is shown to be relevant also for the formation
of topological surface states.

1. Introduction

The interest in quantum dots and, more generally, semiconductor nanostructures has been
growing in the last few years. The interesting feature of such structures is that as the system
dimensions become smaller than the particle de Broglie wavelength, the physical properties
are modified by quantum confinement. It is known, for example, that the optical gap increases
on decreasing the mean dimensions, giving rise to a blue-shift of the optical spectra, and
that a discrete set of states appears as an effect of reducing the system dimensionality. This
has given rise to the possibility of a number of new, very interesting applications, such as
producing artificial atoms and molecules [1], single-electron transistors [2] and quantum
dot lasers [3]. The study of a quantum dot electronic structure can be done within several
theoretical schemes, each one having advantages and drawbacks. There are semi-empirical
calculations (tight binding, pseudopotential) [4–7] where the transferability of the bulk band-
structure parameters to a nanostructure is assumed, first-principles calculations [8], which are
computationally demanding, and the effective-mass approximation [9, 10], which has a high
degree of flexibility but whose validity for very small nanostructures has been questioned.
It has, indeed, been shown that the major causes of the confinement energy overestimation
produced by the effective-mass approximation for very small quantum dots are band non-
parabolicity contributions [10–13] and the hard-wall boundary conditions [14,15]. It is there-
fore clear that when care is taken in choosing the lowest nanostructure dimension tractable
within the effective-mass approximation [16], this method is a powerful tool for studying
quantum confinement effects, particularly for those nanostructures where the shape plays an
important role in determining the energy spectra [17].

Effective-mass calculations for nanostructure geometries characterized by particular
symmetry properties [10] (for example spherical quantum dots or cylindrical quantum wires)
have shown that the band-edge shift due to quantum confinement is the main cause of the
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experimentally observed optical properties. However, it must be stressed that the interpretation
of these properties as a function of only the system ‘mean dimensions’ (that is, of its volume) is
correct, to a good approximation, for systems that are sufficiently isotropic. When the system
geometry begins to show a certain degree of anisotropy, it is not enough to know its ‘mean
dimensions’ in order to describe its physical properties. In other words, if the system loses some
symmetry because of a certain shape deformation, the effect of confinement can be understood
only if related to the geometry changes. The dependence of the energy level structure and
optical spectra on the system anisotropy has been investigated, for example, for InAs self-
assembled quantum dots with lateral dimensions very different from their height [18, 19].
The results show a splitting in the conduction band excited states with respect to the case
of a rotationally invariant system. A similar splitting effect has been investigated also for
vertical circular, elliptic and triangular quantum dots fabricated in semiconductor hetero-
interfaces [20]. Moreover, Efros and Rodina [21] have considered CdSe ellipsoidal quantum
dots taking into account the fourfold degeneracy of the top valence band. The calculations
include the ellipticity as a perturbation on the spherical eigenstates.

In this paper we shall show that it is possible to avoid using perturbation theory and
determine the exact single-particle spectra. We shall limit ourselves to conduction band states,
although an extension of our calculations to valence states with the inclusion of fourfold
degeneracy could be considered. Given the mathematical complexity of the problem, we
shall only report on single-particle properties. Electron–electron interaction effects and their
relation to Coulomb blockade, excitons and the related optical properties will be discussed in
future works.

Our main result is that if ellipsoidal quantum dots are considered instead of the spherical
ones, the energy spectrum modifies as a function of the system anisotropy and that this result
cannot be obtained if only the ‘mean dimensions’ are considered. Moreover, with the aim of
giving a complete description of all types of geometry-induced confinement in an ellipsoidal
quantum dot, we also present the results of calculations for a new type of surface state—that
is, states whose localization is related to the surface curvature [22–24]. We show that the
surface wave function does localize at different points according to the actual dot eccentricity.
A comparison with the corresponding volume-confined states is made.

In section 2 we show how to exactly solve the free-particle Schrödinger equation within an
ellipsoidal quantum dot using hard-wall boundary conditions and a coordinate system in which
it is separable. In section 3 it is shown that it is possible to give also a functional variational
formulation for the problem in order to avoid the mathematical difficulties involved in the
exact solution. This approach is very general when small shape deformations with respect
to a symmetrical geometry are considered [25]. In section 4 we illustrate the nature of the
topological surface states, deriving the relevant equations. Finally, in section 5 we give the
numerical results obtained for both volume and topological surface states, and in section 6 we
draw some conclusions.

2. Volume-confined states

In this section we want to show how to calculate eigenfunctions and eigenvalues of a particle
confined in a closed region of space with ellipsoidal geometry. Let us consider an ellipsoidal
quantum dot with rotational symmetry around the z-direction. We will indicate as a and c its
semi-axes along the x–y plane and the z-direction respectively (x, y and z are the coordinates
in a Cartesian orthogonal system with its origin at the ellipsoid symmetry centre). The region
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considered is limited by the surface S with parametric equations

x = a cos� sin �

y = a sin � sin �

z = c cos�

(1)

with 0 � � < 2π and 0 � � � π . Our problem is that of solving the free-particle Schrödinger
equation

− h̄2

2m∗
�∇2(x, y, z) = Ev(x, y, z) (2)

(where m∗ is the particle mass and Ev its energy) with the boundary condition

(x, y, z)
∣∣
(x,y,z)∈S = 0. (3)

It is therefore necessary to find a new coordinate system (ξ, η,�) such that equation (2) is
separable and such that the equation of our surface S in the new coordinate system reads
ξ = constant. Let us consider the following transformation (prolate spheroidal coordinates
[26]):

x = f
√
(ξ 2 − 1)(1 − η2) cos�

y = f
√
(ξ 2 − 1)(1 − η2) sin �

z = f ξη

(4)

where 1 � ξ < +∞, −1 � η � +1, 0 � � < 2π and f is a parameter. Setting η = cos�with
0 � � � π , equation (4) shows that the surfaces ξ = constant represent a family of ellipsoids
with semi-axes f

√
ξ 2 − 1 and f ξ (along the x–y plane and the z-direction respectively), all

characterized by the same focal distance 2f . Therefore, the parameter f is determined by the
condition that our ellipsoid belongs to this surfaces family—that is, there must exist a value ξ

of ξ such that

 f

√
ξ

2 − 1 = a

f ξ = c

⇒



f = c

√
1 − 1

χ2 = ce

ξ = 1√
1 − 1

χ2

= 1

e

(5)

where χ = c/a and e = f/c is the ellipsoid eccentricity. It is evident that equation (5) is
valid only if χ > 1, which follows from the fact that the transformation (4) parametrizes the
space with ellipsoidal surfaces which have the semi-axis along the z-direction greater than the
semi-axis along the x–y plane. We will discuss the case χ < 1 later.

It is now possible to write equation (2) in the new coordinate system [27]:

− 1√
det G

3∑
i,j=1

∂

∂qi

[
Gi,j

√
det G

∂

∂qj
(q1, q2, q3)

]
= εv(q1, q2, q3) (6)

where G ≡(Gi,j ) = (∂�r/∂qi · ∂�r/∂qj ) is the metric tensor, Gi,j the ratio between the
algebraic complement of Gi,j and det G, (q1, q2, q3) ≡ (ξ, η,�) and εv = 2m∗Ev/h̄2. Using
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equation (4) it is not difficult to show that

G1,1 = f 2 ξ
2 − η2

ξ 2 − 1

G2,2 = f 2 ξ
2 − η2

1 − η2

G3,3 = f 2(ξ 2 − 1)(1 − η2)

(7)

while Gi,j = 0 for i �= j (that is, the new coordinate system is orthogonal). It is easy to show
that equation (6) can be solved with the separation-of-variables technique. In other words, we
can write its solution as (ξ, η,�) = J (ξ)S(η) exp(im�), where we have taken into account
the fact that, because of the rotational symmetry around the z-direction, it is possible to find
a complete set of solutions of equation (2) which are simultaneously eigenfunctions of the
z-component of the angular momentum with eigenvalues mh̄ (m = 0,±1,±2, . . .). In this
way equation (6) separates into two equations (for J and S respectively):

d

dξ

[
(ξ 2 − 1)

dJ

dξ

]
−

(
A − h2ξ 2 +

m2

ξ 2 − 1

)
J = 0 (8a)

d

dη

[
(1 − η2)

dS

dη

]
+

(
A − h2η2 − m2

1 − η2

)
S = 0 (8b)

which are formally equal but must be solved for different ranges of the respective variables
(that is, 1 � ξ < +∞ and −1 � η � 1). A represents the separation constant and h = f

√
εv .

We can notice that equations (8a) and (8b) are coupled by both the separation constant and
h. Therefore, the separation of the Schrödinger equation in spheroidal coordinates is more
difficult than in spherical or cylindrical coordinates. In fact, in these latter cases only the first
equation contains h, so one can solve the second equation determining the A-values in such a
way that its solutions are finite in the corresponding interval, substitute these values in the first
equation and then solve it to get the allowed energies levels. In our case we follow the same
procedure, but the second equation must be solved with fixed h so that the discrete A-values,
obtained by imposing the finiteness of the solution at the points −1 and +1, are functions of
h. It must be pointed out that if h → 0 (that is, f → 0) the prolate spheroidal coordinates
tend to spherical coordinates (because the surfaces ξ = constant become ellipsoids with very
small focal distances). A direct consequence is that if we consider equation (8b) as h → 0,
we must obtain S(η) → P

|m|
l (η) (where P

|m|
l (η) are the associated Legendre functions) and

A ≡ A(h) → l(l + 1) with l = |m|, |m| + 1, |m| + 2, . . .. Therefore it is possible to label
the solutions of equation (8b) and the corresponding values of the separation constant as
S(η) ≡ Sl,m(h, η) and A ≡ Al,m(h) with |m| = 0, 1, 2, . . . and l = |m|, |m| + 1, |m| + 2, . . ..
Correspondingly we can set for equation (8a) J (ξ) ≡ jel,m(h, ξ). It can be shown [26] that
the solutions of equation (8a) and (8b) can be written respectively as

jel,m(h, ξ) =
(
ξ 2 − 1

ξ 2

)|m|/2 +∞∑
s=0,1

′
al,m
s (h)js+|m|(hξ) (9)

and

Sl,m(h, η) =
+∞∑

s=0,1

′
dl,m
s (h)P

|m|
s+|m|(η) (10)

where jk is the spherical Bessel function of order k. The primed sum indicates that the sum
must be extended over even values or odd values of s in which cases it begins from 0 and
1 respectively. This reflects the system invariance with respect to parity transformations. It
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is possible to derive the coefficient recurrence formulae and the expansions of the separation
constant Al,m as h → 0 and h → +∞, inserting the series (9) and (10) in the respective
equations. Some more details are given in the appendix.

If c < a (that is, χ < 1) it is possible to follow the same procedure as indicated above but
using oblate spheroidal coordinates [28]:

x = f
√
(ξ 2 + 1)(1 − η2) cos�

y = f
√
(ξ 2 + 1)(1 − η2) sin �

z = f ξη

(11)

with 0 � ξ < +∞, −1 � η � +1 and 0 � � < 2π . The surfaces ξ = constant represent a
family of ellipsoids with semi-axes f

√
ξ 2 + 1 and f ξ (the semi-axis along the x–y plane is in

this case greater than the one along the z-direction). Equation (5) becomes

 f

√
ξ

2
+ 1 = a

f ξ = c

⇒



f = c

√
1

χ2 − 1 = ae

ξ = 1√
1

χ2 − 1

= χ

e

(12)

with χ < 1. The diagonal components of the metric tensor are

G1,1 = f 2 ξ
2 + η2

ξ 2 + 1

G2,2 = f 2 ξ
2 + η2

1 − η2

G3,3 = f 2(ξ 2 + 1)(1 − η2)

(13)

while the non-diagonal ones are null. Equation (6) separates into two equations:

d

dξ

[
(ξ 2 + 1)

dJ

dξ

]
−

(
A − h2ξ 2 − m2

ξ 2 + 1

)
J = 0 (14a)

d

dη

[
(1 − η2)

dS

dη

]
+

(
A + h2η2 − m2

1 − η2

)
S = 0 (14b)

which must be solved for different ranges of the respective variables (that is, 0 � ξ < +∞
and −1 � η � 1). The solutions can be written using expansions (9) (provided that in this
equation we make the substitution (ξ 2 − 1)/ξ 2 → (ξ 2 + 1)/ξ 2) and (10) again but, as we show
in the appendix, the expansions of the separation constant Al,m as h → 0 and h → +∞ are
different from the case of prolate spheroidal coordinates.

The solution of equation (8a) or equation (14a) (depending on whether χ > 1 or χ < 1
respectively) with the additional condition jel,m(h, ξ) = 0 (hard-wall boundary condition)
gives the discrete spectrum εvn,l,m = 2m∗Ev

n,l,m/h̄
2 of the particle confined in the ellipsoidal

quantum dot. The label n = 1, 2, 3 . . . takes into account the fact that for fixed l and m the
boundary condition can be compatible with a discrete set of values ofh. We expect our solutions
to go into the spherical ones for χ → 1. Let us remember that for the sphere a complete set
of eigenfunctions is given by 0

n,l,m(r, ϑ, ϕ) = jl
[
zn,l(r/R)

]
Ym
l (ϑ, ϕ) where r, ϑ, ϕ are the

spherical coordinates of the generic point, R is the sphere radius, zn,l the nth zero of the Bessel
function of order l and Ym

l (ϑ, ϕ) the spherical harmonics (Ym
l (ϑ, ϕ) ∝ P

|m|
l (cosϑ) exp(imϕ)).

This state has energy ε0
n,l = z2

n,l/R
2, which is degenerate with respect to m. We can label the
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energy levels ns, np, nd, . . ., where s, p, d, . . . correspond to l = 0, 1, 2, . . . respectively. From
the mathematical point of view, n and l −m are related to the number of nodes respectively of
the radial part and the angular part of the wave function inside the sphere. Moreover, l(l + 1)h̄2

takes the physical meaning of the total angular momentum of the particle in the given quantum
state, reflecting the full rotational symmetry of the problem. This, of course, is no longer true
for the ellipsoid quantum states because this type of symmetry is lost. It is therefore important
to stress that if χ �= 1, the label l which appears in equations (9) and (10) does not have the
meaning of the total angular momentum of the particle. It has been used here because there
obviously exists a one-to-one correspondence between the quantum states in the sphere and
the ones in the ellipsoid, so these latter can be labelled with the same quantum number as the
state to which they reduce when f → 0.

3. The variational approach for the volume-confined states

As we have seen in the previous section, the exact solution of the problem of a particle confined
in an ellipsoidal volume is very difficult, mainly because the two equations resulting from the
variable separation are coupled by both the eigenvalue and the separation constant. It is
therefore interesting to try to get approximate evaluations of the particle wave functions and
allowed energies using, for example, a variational approach.

Because the ground-state trial function ̃0(r, ϑ, ϕ) must reduce to 0
1,0,0(r, ϑ, ϕ) in the

limit χ → 1, we can set

̃0(r, ϑ, ϕ) = j0

[
π

R(ϑ)
r

]
f (ϑ) (15)

where

R(ϑ) = c/
√
χ2 + (1 − χ2) cos2 ϑ

represents the distance of the generic point of the ellipsoid surface from its centre. It must
be pointed out that we are using in this case spherical coordinates r, ϑ, ϕ. In equation (15)
we have considered that for the ground state we have l = m = 0, that z1,0 = π (so that the
wave function vanishes on the boundary r = R(ϑ)) and that, because our problem is now
invariant for rotations only around the z-direction, the ground state does not depend on ϕ. The
function f (ϑ) in equation (15) takes into account the deformation effects which the ellipsoidal
geometry induces with respect to the completely symmetric spherical case. The function f (ϑ)

has to be determined in such a way that the energy functional

Ẽv [f ] = 〈̃0|−(h̄2/2m∗) �∇2|̃0〉〈
̃0|̃0

〉 (16)

is stationary with respect to an arbitrary variation of f . This, according to the variational
principle, gives an upper bound to the ground-state energy. Taking the variation of equation (16)
with respect to f , we obtain that

〈̃0|̃0〉 δẼv [f ] + (〈̃0|δ̃0〉 + c.c.)Ẽv [f ] = (〈̃0|−(h̄2/2m∗) �∇2|δ̃0〉 + c.c.) (17)

where c.c. indicates the complex conjugate of the corresponding term in parentheses and
δ̃0 = j0 [πr/R(ϑ)] δf (ϑ). The stationarity of the functional (16) with respect to this
variation of f (ϑ) is given by the condition δẼv [f ] = 0. Moreover, because the variation
δf (ϑ) is a function just of ϑ , we can compute in equation (17) the integrals with respect to ϕ
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and r . The final equation, which follows from simple algebraic manipulations and considering
that δf (ϑ) is arbitrary, is

− d

dϑ

(
sin ϑ

df

dϑ

)
+

π sin ϑ

2 Si(2π)

[
1 +

(dR/dϑ)2

R2(ϑ)

]
f (ϑ) = ε̃v

(sin ϑ)R2(ϑ)

2π Si(2π)
f (ϑ) (18)

where Si(u) = ∫ u

0 [(sin ρ)/ρ] dρ and ε̃v = 2m∗Ẽv/h̄2. Equation (18) must be solved with
the condition

〈̃0|̃0〉 =
∫ π

0
(sin ϑ)

R3(ϑ)

π
f 2(ϑ) dϑ = 1. (19)

For χ → 1 (that is, R(ϑ) → R constant) equation (18) admits the solution f (ϑ) = constant
with ε̃ν = π2/R2—that is, the ground-state energy for the sphere, as expected. Finally,
equation (18) contains a term in the first derivative of f (ϑ) which can be eliminated by setting
f (ϑ) = g(ϑ)/

√
sin ϑ . This leads to

− d2g

dϑ2
+

{
π

2 Si(2π)

[
1 +

(dR/dϑ)2

R2(ϑ)

]
− 1

4 sin2 ϑ
− 1

4

}
g(ϑ) = ε̃v

R2(ϑ)

2π Si(2π)
g(ϑ) (20)

which shows that the confinement of the particle in the ellipsoid can be viewed as the motion in
an effective ϑ-dependent potential. The particle in this picture behaves as if it had a position-
dependent effective mass m̃(ϑ) = m∗R2(ϑ)/2π Si(2π)c2.

4. Topological surface states

In a previous work [22] we have shown that if a particle is confined in the neighbourhood of
a nanostructure surface, then states localized along the surface can arise. This localization is
induced by surface curvature; that is, on a flat surface a particle can move freely whereas on an
undulating surface the particle may be trapped. The potential acting on the direction normal to
the surface whose role is that of keeping the particle in the surface neighbourhood may have
different physical origins. It is beyond the scope of this paper to enter into details on how
such a potential may be built, but a physical hint can easily be given. When a nanostructure
is exposed to an oxidizing or reducing gas, a distribution of surface dielectric dipoles can be
induced whose overall effect may be that of giving a potential pushing the particle toward
the surface [29]. Another instance is surely that of an accumulation layer, in particular that
corresponding to the steepest band slope with an extent of a few nanometres. Such layers may
be found in both two-dimensional systems [30] and nanostructures [31].

The surface states that we are going to study represent a new kind of state because they are
not associated with the breaking of the lattice periodicity or with electronic surface defects. The
confinement of the particle near the surface gives rise to a topological potential which confines
it to the points of largest curvature. This result has been obtained for non-limited structures
such as a deformed quantum wire [22]. In that case, a surface mini-band structure appears,
with confined (that is, non-extended) surface states below the mini-band edges. Moreover, it
has also been shown that the surface mini-band edges are located below the volume-confined
lowest mini-band edge. The most interesting feature of these states is that the surface trapping
of electrons and/or holes could both open new channels for optical emission and/or absorption
and modify the electrical conductivity of the material.

In this section we want to show that topological surface states can arise also on an
ellipsoidal closed surface, as one would expect because of their very general nature. In the
following we shall just outline the derivation of the relevant equations, the mathematical details
being presented in references [22], [23] and [24].
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Let us suppose that there exists a potential which confines the particle in the surface
neighbourhood. If the surface parametric equations are �r = �r(q1, q2), it is possible
to identify a point in the neighbourhood of the surface with the vector �R(q1, q2, q3) =
�r(q1, q2) + q3 �N(q1, q2), where �N(q1, q2) is the normal to the surface and q3 represents the
algebraic distance of the point from the surface. In this way we can define a local curvilinear
coordinate system (q1, q2, q3) and write the Schrödinger equation in this new system. It
has in particular been shown that, if the potential is sufficiently attractive, it is possible to
separate the motion along the surface from the motion along its normal, defining a surface
probability density σ(q1, q2) (|σ(q1, q2)|2 dS represents the probability of finding the particle
in the surface element dS) which satisfies the equation

− h̄2

2m∗

{
2∑

i,j=1

1√
g

∂

∂qi

[√
g gi,j

∂

∂qj
σ (q1, q2)

]
+

(
T 2

4
− D

)
σ(q1, q2)

}
= (ES − EN

n )σ (q1, q2) (21)

where

g = (gi,j ) = (∂�r/∂qi · ∂�r/∂qj )
is the metric tensor on the surface, g = det g, gi,j the ratio between the algebraic complement
of the element gi,j and g, T the double of the surface average curvature with changed sign,
D the surface Gauss curvature [32], ES the surface-state energy and EN

n the energy of the
motion along the surface normal. Equation (21) shows that a topological potential appears,
which depends on the mean and Gauss surface curvature. This potential is, as we will show
in the next section, responsible for the particle confinement at the surface points of largest
curvature. It must be pointed out that if we had considered a particle moving on the surface
(that is, in a two-dimensional world) the Schrödinger equation would not have contained this
contribution [22].

In our case the curvilinear coordinate system on the surface is (q1, q2) = (�,�) where
� and � are defined in equation (1). This system is orthogonal (that is, g1,2 = g2,1 = 0) and
because of the surface invariance with respect to the q2-coordinate, g1,1 and g2,2 do not depend
on q2. Therefore equation (21) becomes

− 1

g1,1

∂2

∂q2
1

σ(q1, q2) − 1√
g1,1g2,2

∂

∂q1

[√
g2,2

g1,1

]
∂

∂q1
σ(q1, q2) − 1

g2,2

∂2

∂q2
2

σ(q1, q2)

−
(
T 2

4
− D

)
σ(q1, q2) = 2m∗

h̄2 (ES − EN
n )σ (q1, q2). (22)

Equation (22) contains terms in the second derivatives with respect to q1 and q2 and a term in
the first derivative with respect to q1. This latter can be eliminated with the substitution

σ(q1, q2) =
(
g1,1

g2,2

)1/4

t (q1) exp(imq2) (23)

where we have taken in account also the fact that, because of the surface symmetry,
equation (22) is separable and its solution must be an eigenfunction of the z-component of the
angular momentum with eigenvalues mh̄ (m = 0,±1,±2, . . .). Using the surface parametric
equations (1) we get g1,1 = a2 cos2 � + c2 sin2 � and g2,2 = a2 sin2 �, so the motion of the
particle along the surface satisfies the Schrödinger-like equation

− d2t

d�2
−

[
1 + (6χ2 − 2) tan2 � + (8χ2 − 3) tan4 � + χ2(3 + χ4 − 2χ2) tan6 �

4(1 + χ2 tan2 �)2 tan2 �

− m2

(
χ2 +

1

tan2 �

)]
t (�) = εSc2

χ2

1 + χ2 tan2 �

1 + tan2 �
t(�) (24)



Confined states in ellipsoidal quantum dots 9027

with a position-dependent effective mass given by

mS(�) = m∗(1 + χ2 tan2 �)/χ2(1 + tan2 �).

We have set εS = 2m∗(ES−ES
n )/h̄

2. Because asχ → 1 the solutions of equation (24) become
the associated Legendre functions, it is possible to label the eigenvalues and eigenfunctions
with two indexes l and m with m = 0,±1,±2, . . . and l = |m|, |m|+1, |m|+2, . . . (εS ≡ εSl,m,
t (�) ≡ tl,m(�) and σ(�,�) ≡ σl,m(�,�)).

5. Numerical results and discussion

Using the separation constant expansions for h → 0 and h → +∞ given in the appendix, we
have solved equations (8a) and equation (14a) numerically using a mid-point shooting method
with the boundary condition J (ξ) = 0. With the same method we have solved equation (20).
In figure 1(a) we show the comparison between the ground-state energy (as a function of
χ ) calculated with the exact method (full line) and the one calculated using the variational
approach (dashed line) given in section 3. As we can see, the results are in very good accord
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Figure 1. (a) The ground-state energy for a particle confined in an ellipsoidal quantum dot as
calculated with the exact approach (full line) and the variational one (dashed line). The volume-
confinement energy of the equivalent sphere is also shown for comparison (dotted line). (b) The
volume-confined ground-state energy is shown for two families of ellipsoids with constant volumes
V = 216 nm3 and V = 512 nm3 as a function of the degree of anisotropy χ . The shape dependence
of this energy clearly comes out.
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provided that we do not consider geometries with χ very far from 1. Anyway, as expected,
the variational solution always gives an upper bound for the exact one. Moreover, we can see
that these energies are an increasing function of χ , as they should be. In fact, the confinement
energy of a particle in a volume V behaves as V −2/3 and, since the ellipsoid-to-sphere volume
ratio is 1/χ2 (we mean the sphere of radius c which in figure 1(a) is represented by the point
χ = 1), we expect the ellipsoid ground-state energy to be smaller than the corresponding
energy for the sphere if χ < 1 and vice versa if χ > 1. The result confirms this statement, but
it must be pointed out that we cannot attribute it to a pure volume effect (that is, the smaller
the volume, the bigger the energy). In order to clarify this point, in the same figure we have
also shown (dotted line) the energy that we get if we consider the equivalent sphere—that is,
the sphere with a volume equal to the ellipsoid volume. If we indicate as Req the radius of this
sphere we have

4

3
πR3

eq = 4

3
πa2c ⇒ Req = c

χ2/3
. (25)

The results shown in figure 1(a) demonstrate that, apart from in a very small region around
χ = 1, the equivalent-sphere energy is always below that of the ellipsoid. This means that
the deformation and the anisotropy effects (that is, the geometry deviations with respect to
the sphere) play a very important role in determining the energy spectrum of our system and
that the correct interpretation of the confined-system properties as experimentally determined
should take into account not only its mean dimensions but also its geometry. In order to give
a quantitative estimation of how the shape can modify the system properties, in figure 1(b)
the volume-confined ground-state energy is shown as a function of the degree of anisotropy χ

for two different ellipsoid families with constant volume (V = 216 nm3 and V = 512 nm3).
If χ = 1 we get the energies for spheres with radii a = c = 6 nm and a = c = 8 nm
respectively. We have used the spherical conduction band effective mass for silicon, which
is m∗ = 0.2588me if me is the free-electron mass. Two effects clearly emerge. The first one
is a volume effect, which corresponds to the fact that for fixed χ the bigger the volume the
lower the confinement energy. The second and the most important one is a shape effect—that
is, the strong dependence of this energy on the structure geometry. In particular, for a fixed
volume the spherical geometry (χ = 1) shows the lowest value of the energy while it is larger
for anisotropic structures (χ �= 1).

In figure 2 we show the energy as a function of χ for the ground state (n = l = m = 0, full
line) and the first two excited states (n = m = 0, l = 1, dotted line and n = 0, l = |m| = 1,
dashed line). All of these states correspond to n = 0 which means that there are no nodes in
the radial part of the wave function. The degeneracy of the states with l = 1 and |m| = 0, 1
for χ = 1 is removed by the deformation effects. The only degeneracy that we have is again
with respect to |m|. It is very interesting to note that all the states shown become degenerate
as χ → 0. The explanation of this behaviour is that, because we are considering the quantity
2m∗Evc2/h̄2—that is, the energy with fixed c—the limit shown corresponds to a → +∞.
In this limit we get two parallel planes with separation 2c for which the ground-state energy
is (h̄2/2m∗)(π/2c)2 in complete accord with the result obtained. Higher excited states with
fixed n (that is, with a fixed number n of nodes in the radial part of the wave function) are all
degenerate in this limit, simply because for the parallel-plane system the confinement energy
depends only on the number of nodes of the wave function in the direction normal to them. A
similar argument can be used to explain why, as we have checked, the states with the same n

and |m| but different l are all degenerate with the value of 2m∗Eva2/h̄2 = (2m∗Evc2/h̄2)/χ2

given by Z2
m,n where Zm,n is the nth zero of the mth Bessel cylindrical function as χ → +∞.

In fact, in this limit and for fixed a (that is, c → +∞) we get a cylinder of radius a for which
the confinement energies depend just on Z2

m,n (or, in other words, on the z-component of the
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Figure 2. The particle energy as a function of χ is shown for the ground state (n = l = m = 0,
full line) and the first two excited states l = 1, n = m = 0 (dotted line) and n = 0, l = |m| = 1
(dashed line). The arrow indicates that for fixed c and χ → 0 the energy of all of these states is
π2/4—that is, that of the volume-confined ground state of two parallel planes with separation 2c.

angular momentum and the number of nodes of the radial wave function inside the cylinder).
These two limiting results confirm the validity of our procedure.

In figure 3 we show the dependence on � (η = cos�) of the ground-state wave function
calculated numerically by solving the angular equations (14b) and (8b) with χ = 0.5 (a) and
χ = 1.5 (b) respectively. In the first case (and, more generally, for χ < 1) we find the state
more confined around the positions � = 0 and � = π (panel (a)) while in the second one
(and, more generally, for χ > 1) it is at � = π/2 (panel (b)). This is an example of how the
wave-function localization depends on the dot geometry.

As has been explained in section 4, we have also investigated topological surface states.
In figure 4(a) we show the energy spectrum calculated by solving numerically equation (24).
The ground state with l = m = 0 (full line) and the first two excited states (m = 0, l = 1,
dotted line and l = |m| = 1, dashed line) are shown. These latter two are degenerate for
χ = 1, in which case the ellipsoid is degenerate with a sphere and the wave functions become
the spherical harmonics Ym

l (�,�) with energies h̄2l(l + 1)/2m∗R2 (if R is the sphere radius).
In particular for χ = 1 the ground state has zero energy which corresponds to the fact that
the topological potential, being vanishing, is unable to localize the wave function along the
surface. We have also performed the calculation of the ground-state energy using the variational
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Figure 3. The dependence on � of the volume-confined ground-state wave function as calculated
with the variational procedure is shown for χ = 0.5 (a) and χ = 1.5 (b). The particle localizes at
the positions � = 0 and � = π or � = π/2 depending on whether χ < 1 or χ > 1 respectively.

method. An inspection of the effective potential of equation (24) suggests that a good choice
of trial function can be

t̃0(�) =
√
(sin �) exp(α cos2 �) (26)

were α is a variational parameter which must be determined from the condition of minimum
energy. In figure 4(b) we show the ground-state energy (full line) and the value of the variational
parameter (dashed line) as functions of χ which have been determined in this way. This
ground-state energy always represents, as it has to, an upper bound to the exact one (shown in
figure 4(a)) and is in very good accord with it.

It is of interest to compare the energies of volume-confined states with those which are
surface localized. Before such a comparison, it must be stressed that the surface energies that
we have calculated are not 2D energies, as one could erroneously believe, simply because they
have been derived starting from a 3D Hamiltonian. Comparing the ground-state energy for
the volume-confined states (see figure 2) and surface states (see figure 4(a)) we can see that
these latter are always (that is, for any χ ) below the first ones, confirming what we found for a
completely different geometry (a deformed quantum wire) with an unlimited surface [22]. In
figure 5 we show the surface ground-state wave function calculated forχ = 4.0 (a), χ = 2.5 (b)
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Figure 4. (a) The topological surface-state energy is shown for the ground state l = m = 0
(full line) and the first two excited states l = 1, m = 0 (dotted line) and l = |m| = 1 (dashed
line). (b) The ground-state energy as calculated using the variational method (full line) and the
corresponding variational parameter (dashed line) are shown.

and χ = 0.5 (c). It can be seen that for values of χ > 1 the surface state tends to localize at
the positions � = 0 and � = π , while if χ < 1 we find a state localized at � = π/2. This
means that the ‘�-localization’ of the surface state is opposite to that of the volume-confined
state.

6. Conclusions

The anisotropy effects in ellipsoidal quantum dots have been shown for both volume-confined
and topological surface states. The results presented clearly show that the volume-confined
energy level structure is modified with respect to that of the spherical quantum dot, giving rise,
in particular, to a splitting of the l = 1 states. Therefore, experimental evidence for anisotropy
should come out on observing optical transitions between excited states and the polarization of
the emitted light [33]. Moreover, we have shown that even for the ground-state energy it is not
possible to give a description in terms of an ‘equivalent’ spherical dot, giving evidence for the
strong correlation between volume effects and the system geometry. In fact, volume-confined
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Figure 5. Surface-ground-state wave functions for χ = 4.0 (a), χ = 2.5 (b) and χ = 0.5 (c). The
particle localization as a function of χ behaves in the opposite way to that for a volume-confined
ground state.

energies relative to structures with constant volume have been compared; it emerges that they
have greater values when the degree of anisotropy is higher. This means that for a fixed volume
the spherical quantum dot shows the lowest band-gap shift. The validity of our calculations
has been checked also for the limiting cases χ → +∞ (with fixed a) and χ → 0 (with fixed
c), in which all the degeneracies are modified in order to obtain, respectively, the cylindrical
quantum wire and the slab-confined energy levels.

Finally, topological surface states, completely absent for the spherical geometry, appear,
confirming their topological nature—that is, their strong dependence on the surface curvature
variations. In particular, the ground state has been shown to lie always below the volume-
confined one, and the respective ‘�-localizations’ to be different. This means that the
possibility of charge transfer from the bulk to this particular class of surface states should
be less efficient than that in deformed quantum wires [22].
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Appendix A. Separation constant expansions

Inserting the wave-function series expansions (9) and (10) in the respective equations (8a) and
(8b) it is possible to derive the recurrence formulae for the expansion coefficients al,m

s and
dl,m
s . In particular it is possible to show that they are not independent, because they satisfy the

relation [26]

al,m
s (h) = (−1)(l−|m|−s)/2 (s + 2|m|)!

s!

(l − |m|)!
(l + |m|)! d

l,m
s (h). (A.1)

In order to unequivocally determine these coefficients we must obviously give a normalization
condition. In particular the radial part of the wave function can be normalized in such a way
that jel,m(h, ξ) → jl(hξ) as ξ → +∞ (in which case f

√
ξ 2 − 1 � f ξ and the ellipsoids

tend to a sphere) [26]. For the angular part the normalization can be done by requiring that
Sl,m(h, η) → P

|m|
l (η) as η → 1; that is, the value of the spheroidal angular wave function for

η = 1 can be taken as the same as the value of the corresponding associated Legendre function
at the same point. This gives the further conditions

+∞∑
s=0,1

′
(−1)(l−|m|−s)/2al,m

s (h) = 1 (A.2)

and
+∞∑

s=0,1

′ (s + 2|m|)!
s!

dl,m
s (h) = (l + |m|)!

(l − |m|)! . (A.3)

It is possible to find the numerical values for the first coefficients of the expansions (9) and
(10) in reference [26].

Moreover, by requiring the angular solution Sl,m(h, η) to be regular at η = ±1 it is possible
to derive for fixed h, l and m the corresponding A-value (in fact, it turns out that for most values
of A the solution is finite at η = 1 but infinite at η = −1; the recursion equation can be solved
using the continued-fraction technique [34] which gives the discrete set of the A-values such
that the series converges). In this way we can get an expansion of the separation constant as
h → 0 and h → ∞. If χ > 1 the separation constant can be written as follows:

Al,m(h) =
4∑

k=0

α
l,m
2k h2k + O(h10) (A.4)

where

α
l,m
0 = l(l + 1)

α
l,m
2 = 1

2

[
1 − (2|m| − 1)(2|m| + 1)

(2l − 1)(2l + 3)

]
α
l,m
4 = −(l − |m| + 1)(l − |m| + 2)(l + |m| + 1)(l + |m| + 2)

2(2l + 1)(2l + 3)3(2l + 5)

+
(l − |m| − 1)(l − |m|)(l + |m| − 1)(l + |m|)

2(2l − 3)(2l − 1)3(2l + 1)

α
l,m
6 = (4m2 − 1)

[
(l − |m| + 1)(l − |m| + 2)(l + |m| + 1)(l + |m| + 2)

(2l − 1)(2l + 1)(2l + 3)5(2l + 5)(2l + 7)

− (l − |m| − 1)(l − |m|)(l + |m| − 1)(l + |m|)
(2l − 5)(2l − 3)(2l − 1)5(2l + 1)(2l + 3)

]
α
l,m
8 = 2(4m2 − 1)2;

l,m
0 +

;
l,m
1

16
+

;
l,m
2

8
+

;
l,m
3

2

(A.5a)
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;
l,m
0 = (l − |m| − 1)(l − |m|)(l + |m| − 1)(l + |m|)

(2l − 5)2(2l − 3)(2l − 1)7(2l + 1)(2l + 3)2

− (l − |m| + 1)(l − |m| + 2)(l + |m| + 1)(l + |m| + 2)

(2l − 1)2(2l + 1)(2l + 3)7(2l + 5)(2l + 7)2

;
l,m
1 = (l − |m| − 3)(l − |m| − 2)(l − |m| − 1)(l − |m|)

(2l − 7)(2l − 5)2(2l − 3)3(2l − 1)4(2l + 1)
× (l + |m| − 3)(l + |m| − 2)(l + |m| − 1)(l + |m|)
− (l − |m| + 1)(l − |m| + 2)(l − |m| + 3)(l − |m| + 4)

(2l + 1)(2l + 3)4(2l + 5)3(2l + 7)2(2l + 9)
× (l + |m| + 1)(l + |m| + 2)(l + |m| + 3)(l + |m| + 4)

;
l,m
2 = (l − |m| + 1)2(l − |m| + 2)2(l + |m| + 1)2(l + |m| + 2)2

(2l + 1)2(2l + 3)7(2l + 5)2

− (l − |m| − 1)2(l − |m|)2(l + |m| − 1)2(l + |m|)2

(2l − 3)2(2l − 1)7(2l + 1)2

;
l,m
3 = (l − |m| − 1)(l − |m|)(l − |m| + 1)(l − |m| + 2)

(2l − 3)(2l − 1)4(2l + 1)2(2l + 3)4(2l + 5)
× (l + |m| − 1)(l + |m|)(l + |m| + 1)(l + |m| + 2)

(A.5b)

as h → 0, while

Al,m(h) = β
l,m
0 −

5∑
k=1

β
l,m
k

hk
+ O(h−6) (A.6)

where

β
l,m
0 = ql,mh + m2 − 1

8
(q2

l,m + 5)

β
l,m
1 = ql,m

64
(q2

l,m + 11 − 32m2)

β
l,m
2 = 1

1024

[
5(q4

l,m + 26q2
l,m + 21) − 384m2(q2

l,m + 1)
]

β
l,m
3 = 1

1282
(33q5

l,m + 1594q3
l,m + 5621ql,m) − m2

128
(37q3

l,m + 167ql,m) +
m4

8
ql,m

β
l,m
4 = 1

2562
(63q6

l,m + 4940q4
l,m + 43327q2

l,m + 22470)

− m2

512
(115q4

l,m + 1310q2
l,m + 735) +

3m4

8
(q2

l,m + 1)

β
l,m
5 = 1

10242
(527q7

l,m + 61529q5
l,m + 1043961q3

l,m + 2241599ql,m)

− m2

32768
(5739q5

l,m + 127550q3
l,m + 298951ql,m)

+
m4

512
(355q3

l,m + 1505ql,m) − m6ql,m

16
ql,m = 2(l − |m|) + 1

(A.7)

as h → ∞.
If χ < 1 the expansion as h → 0 becomes

Al,m(h) =
4∑

k=0

(−1)kαl,m
2k h2k + O(h10) (A.8)
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with the coefficients α
l,m
2k given by equation (A.5a), while the expansion as h → ∞ becomes

Al,m(h) = γ
l,m
0 −

4∑
k=1

γ
l,m
k

hk
+ O(h−5) (A.9)

where

γ
l,m
0 = −h2 + 2h(2ν + |m| + 1) − 2ν(ν + |m| + 1) − (|m| + 1)

γ
l,m
1 = Ql,m(Q

2
l,m + 1 − m2)

23

γ
l,m
2 = 5Q4

l,m + 10Q2
l,m + 1 − 2m2(3Q2

l,m + 1) + m4

26

γ
l,m
3 = Ql,m

[
33Q4

l,m + 114Q2
l,m + 37 − 2m2(23Q2

l,m + 25) + 13m4
]

29

γ
l,m
4 = 1

210
(63Q6

l,m + 340Q4
l,m + 239Q2

l,m + 14 − 10m2(10Q4
l,m + 23Q2

l,m + 3)

+ m4(39Q2
l,m − 18) − 2m6)

(A.10a)

and

ν =


l − |m|

2
for l − |m| even

l − |m| − 1

2
for l − |m| odd

Ql,m =
{
l + 1 for l − |m| even

l for l − |m| odd.

(A.10b)

These expansions are given in reference [28]. It must be pointed out that the numerical solution
of equations (8a) and (14a) requires the function Al,m(h). For this purpose we have used the
expansions shown above, verifying that, if we stop them at the maximum order shown, there
always exists an interval of values of h (depending, in general, on l and m) where the expansion
as h → 0 and the one as h → ∞ give in practice the same values for the separation constant.
In particular we have found, for fixed l and m, the matching point of the two expansions. This
means that without any appreciable error we can have the values of the separation constant for
h varying throughout the range (0,+∞).
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